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Abstract: Pediocin-like antimicrobial peptides (AMPs) form a group of lactic acid bacteria produced, cationic membrane-
permeabilizing peptides with 37 to 48 residues. Upon exposure to membrane-mimicking entities, their hydrophilic, cationic, and
highly conserved N-terminal region forms a three-stranded antiparallel β-sheet supported by a conserved disulfide bridge. This
N-terminal β-sheet region is followed by a central amphiphilic α-helix and this in most (if not all) of these peptides is followed by a
rather extended C-terminal tail that folds back onto the central α-helix, thereby creating a hairpin-like structure in the C-terminal
half. There is a flexible hinge between the β-sheet N-terminal region and the hairpin C-terminal region and one thus obtains
two domains that may move relative to each other. The cationic N-terminal β-sheet domain mediates binding of the pediocin-like
AMPs to the target-cell surface through electrostatic interactions, while the more hydrophobic and amphiphilic C-terminal hairpin
domain penetrates into the hydrophobic part of the target-cell membrane, thereby mediating leakage through the membrane.
The hinge provides the structural flexibility that enables the C-terminal hairpin domain to dip into the hydrophobic part of the
membrane. Despite extensive sequence similarities, these AMPs differ markedly in their target-cell specificity, and results obtained
with hybrid AMPs indicate that the membrane-penetrating hairpin-like C-terminal domain is the major specificity determinant.

Bacteria that produce pediocin-like AMPs also produce a 11-kDa cognate immunity protein that protects the producer. The
immunity proteins are well-structured, 4-helix bundle cytosolic proteins. They show a high degree of specificity in that they
largely recognize and confer immunity only to their cognate AMP and in some cases to a few AMPs that are closely related to
their cognate AMP. The C-terminal half of the immunity proteins contains a domain that is involved in specific recognition of
the C-terminal membrane-penetrating specificity-determining hairpin domain of the cognate AMP. Copyright  2005 European
Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

Ribosomally synthesized, membrane-permeabilizing,
antimicrobial peptides (AMPs) are widely distributed in
nature, being produced by bacteria, plants, and a wide
variety of animals – both vertebrates and invertebrates
[1–3]. In animals and plants, these peptides are an
important defense against microorganisms. Although
AMPs produced by animal and plants and those
produced by bacteria certainly function in entirely
different settings, the production of bacterial AMPs
may also be thought of as a type of defense, since
the peptides kill invading bacteria that compete with
the AMP-producer for nutrients. The AMPs produced
by bacteria seem overall to be more potent than the
ones produced by eukaryotes, the former peptides
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being active at pico- to nanomolar concentrations
and the latter at micromolar concentrations. Thus,
structure–function analysis of AMPs produced by
bacteria may especially be useful for elucidating how
potent membrane-permeabilizing AMPs function at a
molecular level.

One important and well-studied group of bacterial
AMPs are the pediocin-like AMPs (often termed the
pediocin-like, or class IIa, bacteriocins) produced by
a variety of lactic acid bacteria [2,4–6]. The first of
these AMPs to be identified and thoroughly character-
ized were leucocin A, [7], pediocin PA-1 (from which the
term pediocin-like bacteriocins/AMPs has been derived)
[8–11], sakacin P [12–14], curvacin A [12,15–17], and
mesentericin Y105 [18–20]. Since the initial charac-
terization of these peptides in the early nineties, the
group has greatly expanded and includes now more
than 20 different AMPs (Figure 1). These peptides dis-
play antilisteria activity and kill target cells by per-
meabilizing the cell membrane, thereby disrupting the
proton motive force [27,40–44]. They cause a rapid
depletion of the adenosine triphosphate (ATP) pool in
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1  1        10       20        30        40 References
 .        .         .         .         . 

Enterocin A: TTHSGKYYGNGVYCTKNKCTVDWAKATTCIAGMSIGGFLGGAIPG--KC 21
Divercin V41: TKYYGNGVYCNSKKCWVDWGQASGCIGQTVVGGWLGGAIPG--KC  22

 Divergicin M35: TKYYGNGVYCNSKKCWVDWGTAQGCID--VVIGQLGGGIPGKGKC 23 
Coagulin: KYYGNGVTCGKHSCSVDWGKATTCIINNGAMAWATGGHQGTHKC 24
Pediocin PA-1: KYYGNGVTCGKHSCSVDWGKATTCIINNGAMAWATGGHQGNHKC 9, 10 
Piscicocin CS526: KYYGNGLSxNKKGxTVDWGTAIGIIGNNAAANxATGGAAGxNK? 25
Sakacin P: KYYGNGVHCGKHSCTVDWGTAIGNIGNNAAANWATGGNAGWNK 13 
Listeriocin 743A: KSYGNGVHCNKKKCWVDWGSAISTIGNNSAANWATGGAAGWKS 26
Mundticin: KYYGNGVSCNKKGCSVDWGKAIGIIGNNSAANLATGGAAGWSK 27
Mundticin KS: KYYGNGVSCNKKGCSVDWGKAIGIIGNNSAANLATGGAAGWKS 28
Piscicolin 126: KYYGNGVSCNKNGCTVDWSKAIGIIGNNAAANLTTGGAAGWNKG 29, 30
Sakacin 5X: KYYGNGLSCNKSGCSVDWSKAISIIGNNAVANLTTGGAAGWKS 31
Leucocin C: KNYGNGVHCTKKGCSVDWGYAWTNIANNSVMNGLTGGNAGWHN 32

2 
Leucocin A: KYYGNGVHCTKSGCSVNWGEAFSAGVHRLANGGNGFW 7
Mesentericin Y105: KYYGNGVHCTKSGCSVNWGEAASAGIHRLANGGNGFW 20
Lactococcin MMFII: TSYGNGVHCNKSKCWIDVSELETYKAGTVSNPKDILW 33
Sakacin G: KYYGNGVSCNSHGCSVNWGQAWTCGVNHLANGGHGVC 34
Plantaricin 423: KYYGNGVTCGKHSCSVNWGQAFSCSVSHLANFGHGKC 35
Plantaricin C19: KYYGNGLSCSKKGCTVNWGQAFSCGVNRVATAGHGKx 36 

3 
Curvacin A: ARSYGNGVYCNNKKCWVNRGEATQSIIGGMISGWASGLAGM 15,16
Carnobacteriocin BM1:AISYGNGVYCNKEKCWVNKAENKQAITGIVIGGWASSLAGMGH 37 
Enterocin P: A TRSYGNGVYCNNSKCWVNWGEAKENIAGIVISGWASGLAGMGH   38
Bacteriocin 31:       ATYYGNGLYCNKQKCWVDWNKASREIGKIIVNGWVQHGPWAPR 39
Carnobacteriocin B2: VNYGNGVSCSKTKCSVNWGQAFQERYTAGINSFVSGVASGAGSIGRRP 37 

Figure 1 Multiple sequence alignment of pediocin-like AMPs highlighting the YGNGV/L ‘pediocin box’ motif (bold face) and
conserved cysteine residues (bold face) in the N-terminal half, tryptophan residues (black boxes), and conserved residues in the
C-terminal half of the peptides (yellow, blue, gray, green, and red boxes). The C-terminal half is more diverse than the N-terminal
half, and the classification of the peptides into three subclasses is thus based on sequence similarities and differences in the
C-terminal half of the peptides. There is a flexible hinge at the conserved Asp17 (green boxes) in peptides of subgroup 1, and
presumably also at Asn17/Asp17 (green boxes) in peptides of subgroup 2 and 3. This hinge separates the β-sheet N-terminal
domain and the hairpin-like C-terminal domain. Note that in numbering the residues (as indicated above the sequences), residue
number 2 before the well-conserved YGNGV motif is in all cases referred to as residue 1, since this residue is the first residue in
most – but not all – of the peptides. The PILEUP program of the Genetics Computer Group sequence analysis program package
(Wisconsin Package Version 8.1, Genetic Computer Group) was used to set up the sequence alignments.

target cells, presumably due to ATP consumption con-
nected to the cell’s attempt to restore the proton motif
force. As is the case for most membrane-permeabilizing
AMPs, the pediocin-like AMPs are cationic and partly
amphiphilic and/or hydrophobic (Figure 1). Their
positive charge presumably facilitates interactions
with the negatively charged bacterial phospholipid-
containing membranes and/or acidic bacterial cell
walls, whereas their amphiphilic/hydrophobic char-
acter enables membrane-permeabilization. All the
pediocin-like AMPs contain between 37 and 48
residues, and in the N-terminal region they contain the
conserved Y-G-N-G-V/L ‘pediocin box’ motif and two
cysteine residues joined by a disulfide bridge (Figure 1).
They have very similar primary structures, especially in
the N-terminal half. They are somewhat more diverse in
the C-terminal half and they may be grouped into three
subgroups according to sequence similarities and differ-
ences in this half of the peptides (Figure 1). The peptides
in subgroup 2 are clearly somewhat shorter – because
of a shorter C-terminal half – than the peptides of sub-
group 1 and 3, whereas the peptides in subgroup 3
lack the hairpin-stabilizing cysteine and/or tryptophan

residues that are present at or near the C-terminal
end in the peptides of subgroup 1 and 2 (Figure 1).
Interestingly, despite similarities in primary structures,
the pediocin-like AMPs differ markedly in their target-
cell specificity [45–49]. They have been shown to be
active – but often to various degrees – against vari-
ous Lactobacillus, Pediococcus, Enterococcus, Carnobac-
terium, Leuconostoc, Lactococcus, Clostridium and Liste-
ria strains (46).

It is often observed that the specificity of similar
AMPs and the susceptibility of similar target cells for
a given AMP vary much more than one might expect
simply on the basis of an interaction between a cationic
amphiphilic peptide and the lipids of a cell membrane.
Subtle structural differences in peptides may lead to
marked differences in specificity, and subtle differences
in target cells may lead to marked differences in their
susceptibility to a peptide. Elucidation of what governs
the specificity of peptides and the susceptibility of
target cells is of great importance for future use of
peptides as antimicrobial agents. The difference in
the target-cell specificity of the pediocin-like AMPs
combined with their extensive sequence similarities
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make these peptides especially well suited for analyzing
the relationship between structure and target-cell
specificity. In the following, we will review some recent
results on structure–function analysis of the pediocin-
like AMPs that reveal interesting aspects about their
mode of action.

Biosynthesis and Secretion of Pediocin-Like AMPs

At least four genes found in close proximity (usually
organized in one or two operons) are required for
production of the pediocin-like AMPs [5,9,14,17,50,51]:
(i) the structural gene encoding the AMP precursor,
(ii) an immunity gene encoding the immunity protein
that protects the AMP-producer from being killed by its
own AMP, (iii) a gene encoding a membrane-associated
ABC transporter that transfers the AMP across the
membrane concomitantly with removal of the leader
sequence, and (iv) a gene encoding an assessory protein
whose function has not been entirely clarified, although
it appears to be necessary for secretion of the AMP. For
a more detailed description of the organization of gene
clusters involved in production of various pediocin-like
AMPs, Ref. 4 is recommended.

The precursor of the pediocin-like AMPs contains a
N-terminal leader sequence that presumably facilitates
interaction with the transporter and/or keeps the AMP
inactive until it has been secreted from the cell. The
leader sequence contains 15 to 30 residues and a
consensus sequence, and is most often of the double-
glycine type that is cleaved off at the C-terminal side
of two glycine residues [5,52,53]. Three pediocin-like
AMPs (listeriocin 743 A, bacteriocin 31 and enterocin
P), however, have a sec-type instead of a double-glycine
type leader sequence, and they are presumably secreted
by the sec-dependent translocation system [26,38,39].

The production of some pediocin-like AMPs (such
as curvacin A, sakacin P, carnobacteriocin B2, and
enterocin A) is transcriptionally regulated through a
three component signal transduction system consisting

of an induction factor, a membrane-associated histidine
protein kinase, and a response regulator [54,55]. The
induction factor is a peptide pheromone, which, upon
secretion from bacteria, interacts with the membrane-
associated histidine kinase, thereby triggering the
kinase to phosphorylate the intracellular response
regulator, thus enabling the response regulators
to activate the genes needed for AMP-production
[54,55].

The Structure of Pediocin-Like AMPs and their
Orientation in Membranes

Based on their primary structures (Figure 1), the pep-
tide chains of pediocin-like AMPs may roughly be
divided into two regions: (i) a hydrophilic, cationic
and highly conserved N-terminal region that con-
tains the ‘pediocin box’ motif and (ii) a less conserved
hydrophobic/amphiphilic C-terminal region [45]. Cir-
cular dichroism (CD) spectroscopy reveals that the
peptides are unstructured in water, but become struc-
tured upon contact with membrane-mimicking entities
[20,56–58]. Nuclear magnetic resonance (NMR) struc-
tural studies of leucocin A [56], carnobacteriocin B2
[59], sakacin P [58] and a mutant of sakacin P [58] in the
presence of membrane-mimicking entities have shown
that the N-terminal region forms a three-stranded
antiparallel β-sheet-like structure supported by a con-
served disulfide bridge (the β-sheet was not evident
in carnobacteriocin B2 [59]). This N-terminal β-sheet
region is followed by a central amphiphilic α-helix and
this in turn by a rather extended C-terminal tail that
folds back onto the central α-helix, thereby creating a
hairpin-like structure in the C-terminal half (Figure 2)
[56,58,59]. There is a flexible hinge (at the conserved
Asp17 in subgroup 1 AMPs, Figure 1) between the
β-sheet N-terminal region and the hairpin-like C-
terminal region and one thus obtains two domains
that may move relative to each other [58]. Site-directed

b

Figure 2 A cartoon depiction of the structure and orientation in membranes of pediocin-like AMPs. A pediocin-like AMP, in
which the C-terminal hairpin structure is stabilized by (A), a disulfide bridge and (B), an interface-localized tryptophan residue
near the C-terminal end of the AMP. Tryptophan residues that become localized in the membrane-water interface are indicated
by W and the disulfide bridge by –S–S–.
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in vitro mutagenesis and peptide-binding studies indi-
cate that the cationic N-terminal β-sheet domain medi-
ates binding of the pediocin-like AMPs to the target-
cell surface through electrostatic interactions [60,61],
whereas the more hydrophobic and amphiphilic C-
terminal hairpin domain penetrates into the hydropho-
bic part of the target-cell membrane, thereby medi-
ating leakage through the membrane [45,49,62,63].
The hinge apparently provides the structural flexi-
bility that enables the C-terminal hairpin domain to
dip into the hydrophobic part of the membrane [58].
The well-conserved central tryptophan residue (at posi-
tion 18 in most of the peptides; Figure 1) positions
itself in the water–membrane interface (as is com-
mon for tryptophan residues in membrane-penetrating
polypeptides [64]) and thereby helps position the C-
terminal hairpin domain correctly in the membrane
(Figure 2).

The hairpin structure is, in some pediocin-like AMPs
(such as enterocin A, divercin V41, coagulin and
pediocin PA-1, see Figure 1), stabilized by a disulfide
bridge between a C-terminal cysteine residue and a
cysteine residue in the middle of the α-helix (Figure 2A).
Most of the pediocin-like AMPs, however, lack these two
cysteine residues, but instead contain a tryptophan
residue near the C-terminal end of the peptide
(exceptions being the subgroup 3 AMPs; Figure 1).
Site-directed, in vitro mutagenesis have shown that
this tryptophan residue also positions itself in the
membrane–water interface, thereby stabilizing the
hairpin structure of the peptides that lack the
structure-stabilizing disulfide bridge in the C-terminal
domain (Figure 2B) [49]. Consistent with this hairpin
structure model is the observation that insertion of a
hairpin-stabilizing disulfide bridge into a pediocin-like
AMP (sakacin P) that lacks this bridge does not have
a detrimental effect on the potency of the peptide, but
rather renders it more thermostable (i.e. it functions at
higher temperatures) [47].

It should be noted that the amino acid sequences
of the C-terminal part of the pediocin-like AMPs in
subgroup 3 are somewhat different from the corre-
sponding sequences of the AMPs of subgroup 1 and
2, in that most of the subgroup 3 peptides (bacteriocin
31 being an exception) lack both the hairpin-stabilizing
disulfide bridge and the well-conserved tryptophan
residue near the C-terminal end (Figure 1). Conse-
quently, it is not entirely clear whether the subgroup
3 AMPs, in fact, form a hairpin-like structure in their
C-terminal domain, even though they do have a well-
conserved tryptophan residue in the middle of the
C-terminal half that might stabilize such a struc-
ture if it positions itself in the membrane interface
along with the conserved tryptophan residue found
at positions 16, 17, or 18 (depending on the peptide;
Figure 1).

The C-Terminal Hairpin Domain That Interacts with
the Hydrophobic Part of the Cell Membrane is
Important in Determining the Target-Cell Specificity

The structure of the pediocin-like AMPs described
earlier implies that the two domains may to some extent
function independently of each other. This is consistent
with results showing that potent hybrid AMPs may be
constructed by joining N- and C-terminal domains from
different pediocin-like AMPs, using the hinge region as
the recombination point [65]. The active hybrid peptides
have target-cell specificities similar to the peptide from
which the C-terminal domain is derived, indicating
that the membrane-penetrating hairpin-like C-terminal
domain is the major specificity determinant in the
pediocin-like AMPs [65]. This conclusion is consistent
with results showing that pediocin-like AMPs that have
been altered in the C-terminal region by use of site-
directed in vitro mutagenesis often differ from the wild-
type peptide in their target-cell specificity [47,49]. An
important specificity-determining step thus apparently
involves interactions with lipids and/or proteins in
the interphase and/or hydrophobic phase of the cell
membrane [65]. One protein that might be involved in
such an interaction is the membrane-bound mannose
phosphotransferase system permease [66–71]. This
protein must apparently be expressed in order for
cells to be sensitive to pediocin-like AMPs [66,68–71].
Comparative two-dimensional gel analysis revealed that
leucocin A-resistant mutants derived from leucocin A-
sensitive listerial strains all lacked the MptA subunit
of this protein [69], whereas heterologous expression of
the MptC subunit of the mannose phosphotransferase
system permease in an insensitive strain of Lactococcus
lactis rendered the strain sensitive to several pediocin-
like AMPs [71]. It has consequently been suggested
that one of the permease subunits (MptC) functions
as a receptor or docking site for pediocin-like AMPs
[71]. Interestingly, 15mer fragments starting from the
central hinge region and going towards the C-terminal
end inhibit pediocin-like AMPs in a specific manner
[72,73], suggesting that this region of the C-terminal
hairpin domain might interact with a receptor.

One might have expected the N-terminal domain
that interacts with the cell surface to be a major
specificity determinant, since the affinity of an AMP
to the cell surface will influence the cell’s sensitiv-
ity to the AMP. Target cells do not, however, seem to
discriminate between the N-terminal domains of the
different pediocin-like AMPs, presumably because the
N-terminal domains have very similar primary struc-
tures (Figure 1).

Immunity Proteins Render Cells Immune to
Pediocin-Like AMPs

Bacteria that produce pediocin-like AMPs also produce
cognate immunity proteins that protect bacteria from
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cbm1-im: MIKDEKINKIYALVKSALDNTDVKNDKKLSLLLMRI..QETSINGELFY.DYKKELQPAISM 37
curA-im: LKADYKKINSILTYTSTALKNPKIIKDKDLVVLLTII..QEEAKQNRIFY.DYKRKFRPAVTR 17
entP-im: MKSNKSFNKVLELTETALATPEIKKDKNLCEILEKV..KASAAKGEFYY.DYKKEFQPAISG 38
bac31-im: MD.KQQELLDLLSKAYNDPKINEYEGLKDKLFECAKRLT..TNETNIGEVCYKLSTINSE 39
cbnB2-im: MDIKSQTLYLNLSEAYKDPEVKANEFLSKLVVQCAGKLTASNSENSYIEVISLLSRGISS 37

cbm1-im: YSIQHNFRVPDDLVKLLALVQTPKAWSGF
curA-im: FTIDNNFEIPDCLVKLLSAVETPKAWSGFS 
entP-im: FTIRNGFSTPKVLLELLAEVKTPKAWSGL 
bac31-im: YLARHHFEMPKSII....ELQKFVTK...EGQKYRGW.ASIGIWS
cbnB2-im: YYLSHKRIIPSSMLTIYTQIQKDIKNGNIDTEKLRKYEIAKGLMSVPYIYF 

Subgroup C References

leuA-im: RL KNNILLDDAKIYTNKLYLLLIDRKDDAG.YGDICDVLFQVSKKLDSTK...NVEALINRLV. 7
mesY-im: MKKKYRYLEDSKNYTSTLYSLLVDNVDKPG.YSDICDVLLQVSKKLDNTQ...SVEALINRLV. 19
divI-im: MKCESKQVVHELYNSL.DQSD....MEDIKEVLLKVYKKLEDSK.E.NV.PLINRLV. 22
entA-im: MKKNAKQIVHELYNDI.SISKDPK.YSDILEVLQKVYLKLEKQKYELDPSPLINRLV. 21
orfY-im: TNQEIAKENIHTLYNSLMAHPDKSNALLDITDVLSQVYLTLETAK...NPEVLVNRLA. 78
ped-im: M

M
NKTKSEHIKQQALDLFTRLQFLLQKHDTIEPYQYVLDILETGISKTKHNQQTPERQARVVY 9

leuA-im: NYIRITASTNRIKFSKDEEAVIIELGVIGQ.KAGLNGQYMADFSD..KSQFYSIFER
mesY-im: NYIRITASTYKIIFSKKEEELIIKLGVIGQ.KAGLNGQYMADFSD..KSQFYSVFDQ
divI-im: NFIYFTAFNQKLHFNEEQESMIRKLSEIGQ.TAGLNGVYRSSYGD..KTQF
entA-im: NYLYFTAYTNKIRFTEYQEELIRNLSEIGR.TAGINGLYRADYGD..KSQF
orfY-im: NYIYSVGF.GKIHLNKSEEQLLIDLGAYGQ.RAGWNGVYRGDCTS..KAEFFNYSDARKYARV
ped-im: NKIASQALVDKLHFTAEENKVLAAINELAHSQKGWGEFNMLDTTNTWPSQ

Subgroup A: References

orfb3-im: ATITDLLNDLKIDLGNESLQNVLENYLEELEQANAAVPIILG  37
orf285-im: KWYSGGSERSEQAIITIKALLTDLQDASKGPALQTVLTTYQTELESKKASVPLILS  79
pisc-im: MGKLKWFSGGKERSNQAENIITDLLDDLKTDLDNESLKKVLENYLEELKQKGASVPLILS  80
sakX-im: MSKVKWFSGGVERGNQAVQIINELLNDDKIISDSPLEITL.KKYRIELQQKESSIPFILS  81
sakP-im: MKILKWYSGGKDRGERANDIIGQLLLDLNHDPKNEHLEAILINYQNEIKRKESSVPFILS  14
munKS-im: MSNLKWFSGGDDRRKKAEVIITELLDDLEMDLGNESLRKVLGSYLKKLKNEGTSVPLVLS  28
entCL-im: MSNLKWFSGGDDRRKKAEVIITELLDDLEIDLGNESLRKVLGSYLEKLKNEGTSVPLVLS  82
lisA-im: KKVKWYSGGDERGEKAIGLILELLKELNTNSDSQLLQEVLNKYKEELENKGSSVPLVLS 26
divT2-im: MKINQKYYNNKEQIQAAIPIVRNILDKLNGD.NQEELKGMLINFQNELWSPKLDA.LLLN  22

orfb3-im: RMNIDISTAIRKDGVTLSEIQSKKLKELISISYIKYGY
orf285-im:RLNLAIANALQEDGLTLSAAQSEQVKALTALSNIRYGY
pisc-im: RMNLDISKAIRNDGVTLSDYQSKKLKELTSISNIRYGY
sakX-im: RMNLDISKALRSDPNQLSKEQTNKLKNLTSLSNIRYGY
sakP-im: RMNISIANTIRRDRLILTDFQEDKLKLLTALSNIRYGY
munKS-im: RMNIEISNAIKKDGVSLNENQSKKLKELMSISNIRYGY
entCL-im: RMNIEISNAIKKDGVSLNENQSKKLKELISISNIRYGY
lisA-im: RMNLAISHAIRKNGVILSDTQSTI.KELTSLSSIRYGYF
divT2-im: RMCLDISNCLVSNGIILSKEESNSFKDLFKLIQTSEK

Subgroup B: References

M
M

I

Figure 3 Sequence alignment and grouping of immunity proteins of pediocin-like AMPs. Black and grey boxes indicate regions
of sequence similarity. The following amino acids were considered similar: D and E; F and Y; I, V and L; N and Q; K and
R; S and T. Subgroup A consists of the immunity proteins for the following pediocin-like AMPs (with abbreviated name of
the immunity proteins in parenthesis): leucocin A (leuA-im), mesentericin Y105 (mesY-im), divercin V41 (divI-im), enterocin A
(entA-im), an orphan immunity protein with no corresponding AMP (orfY-im), pediocin PA-1 and coagulin (ped-im). Subgroup
B consists of the immunity proteins for the following pediocin-like AMPs (with abbreviated name of the immunity proteins in
parenthesis): two orphan immunity proteins with no corresponding AMPs (orfβ3-im and orf285-im), piscicolin 126 (pisc-im),
sakacin 5X and P (sakX-im and sakP-im), mundticin KS (munKS-im), enterocin CRL35 (entCL-im), listeriocin 743A (lisA-im),
and an orphan immunity protein with no corresponding AMP (divT2-im). Subgroup C consists of the immunity proteins for the
following pediocin-like AMPs (with abbreviated name of the immunity proteins in parenthesis): carnobacteriocin B1 (cbm1-im),
curvacin A (curA-im), enterocin P (entP-im), bacteriocin31 (bac31-im), and carnobacteriocin B2 (cbnB2-im). The PILEUP program
mentioned in legend to Figure 1 was used to set up the sequence alignments.
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being killed by their own AMPs [14,17,50,51,65,74–77].
The functionality of the immunity proteins was demon-
strated by showing that heterologous expression of
their genes in sensitive bacteria strains rendered the
strains less sensitive to pediocin-like AMPs. Presently,
the primary structures of at least 20 immunity proteins
for pediocin-like AMPs have been deduced from DNA
sequences (Figure 3). They are well-structured α-helical
proteins that consist of between 88 and 115 amino acid
residues and display 5 to 85% sequence similarities
[77,83–85]. They show a high degree of specificity in
that they largely recognize and confer resistance only to
their cognate pediocin-like AMP and in some cases to
a few AMPs that are closely related to the cognate AMP
[65,76,77].

The gene encoding an immunity protein is generally
located close to and often on the same operon as
the gene encoding the cognate pediocin-like AMP.
Expression of the two genes is consequently often
coregulated, and bacteria may thus be sensitive to
their own AMP when in a nonproducing state [46].
Orphan immunity genes/proteins have, however, also
been identified [14,22,37,76]. These orphan immunity
proteins are not directly associated with a particular
pediocin-like AMP and they may render bacteria that
do not produce AMPs resistant to some pediocin-like
AMPs.

The mode of action of the immunity proteins
has not been elucidated, although it has been
suggested that they might act by interfering with
the interaction between pediocin-like AMPs and a
(putative) membrane-located receptor [74,83]. The
immunity proteins for pediocin-like AMPs are located
intracellularly, a small proportion (about 1%) possibly
being associated with the cell membrane [74,75].
The recently reported NMR solution structure of the
immunity protein for carnobacteriocin B2 (cbnB2-im;
see Figure 3 for its primary structure) has revealed that
the protein consists of an antiparallel four-helix bundle
(helix 1–4) with the C-terminal region (containing
a fifth helix and an extended strand) being packed
approximately in a perpendicular manner across helix
3 and 4 [83]. We have recently obtained the crystal
structure of the enterocin A immunity protein (entA-
im; see Figure 3 for its primary structure), which was
also shown to contain an antiparallel four-helix bundle
(helix 1–4) with a flexible C-terminal tail [85] (Figure 4).
Structural modeling based on sequence similarities
indicates that other immunity proteins for pediocin-
like AMPs (leuA-im, divI-im, and mesY-im) have similar
three-dimensional structures [85].

Using hybrid immunity proteins and hybrid pediocin-
like AMPs, it has been demonstrated that the
C-terminal half of the immunity proteins contains a
region that specifically recognizes the C-terminal hair-
pin domain of the cognate AMP [65]. It has, however,

Figure 4 The three-dimensional structure of the immunity
protein (entA-im) for enterocin A (A) shown as a ribbon diagram
(the helices are numbered from 1 to 4 starting from the
N-terminal end) and (B) showing the molecular surface and
surface charge distribution (red indicates negative charge and
blue positive charge). The loop structure shown in blue (upper
right-hand corner) is a ribbon diagram of the 7-residue loop
that connects helix 2 and 3 (see below). The structure shown in
B is in the same orientation as that shown in A. The structure
of the immunity protein in two crystals with different space
groups was determined [85]. In one of the crystals, there was
one molecule per asymmetric unit and the structure of this
molecule was determined to 2.2 Å resolution, whereas in the
other crystal there were three molecules per asymmetric unit
and the structure of each of these molecules was determined to
1.6 Å resolution. The four molecules had identical structures
except that the C-terminal loop that extends from helix 4
appears to be flexible and its structure was thus only well
defined in one of the four molecules (the one shown in this
figure). In this molecule, however, the loop connecting helix 2
and 3 (from and including residue 40 to and including residue
46) apparently fluctuated and could not be determined, and
it is, consequently, not included in the structure shown in
the figure. This 7-residue loop structure was well defined and
was identical in the three other molecules. The 7-residue loop
contained a one-turn α-helix in the middle and it is illustrated
in a ribbon diagram in blue in the upper right-hand corner
(see Ref. 85 for more details).

not been possible to demonstrate direct physical con-
tact between immunity proteins and AMPs [83]. The
fact that there is some strain-dependent variation in
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immunity protein functionality [76,77] suggests that
the immunity proteins may interact indirectly with the
AMPs via cell components that vary somewhat between
strains. This cell component could, for instance, be an
AMP receptor. The immunity proteins could then act
by binding to the cytoplasmic side of the receptor and
thereby block the receptor’s ability to interact with the
AMP. Such a mechanism of action necessitates, how-
ever, that the strain-dependent variation in the receptor
is large enough to cause sufficient variations in the
receptor-binding of (i) the various pediocin-like AMPs
(in order to account for the different target-cell speci-
ficities of the pediocin-like AMPs), and/or (ii) the various
immunity proteins (in order to account for specificity of
immunity proteins for their cognate AMP).

Although the pediocin-like AMPs are among the best-
characterized AMPs produced by lactic acid bacteria,
there are still many aspects concerning these AMPs
that need further elucidation. The peptides of subgroup
3 differ conceptually somewhat in their primary
structures from the peptides of subgroup 1 and 2.
It is thus unclear to what extent the three-dimensional
structure discussed in this review also describes the
structure of the AMPs of subgroup 3. It is also
unclear to what extent the three-dimensional structure
that has been determined for some of the immunity
proteins may be generalized and thus describes the
structure for all the pediocin-like immunity proteins.
It remains to be clarified how the immunity proteins
(directly or indirectly) specifically interact with the
pediocin-like AMPs and thereby render cells immune,
and we lack detailed understanding of how the AMPs
bind to and permeabilize the target-cell membrane.
Further research on the pediocin-like AMPs and their
immunity proteins will clarify these questions, and
the answers obtained should reveal some general
mechanistic aspects relevant also to other cationic
membrane-permeabilizing AMPs.
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